*Covid–19. https://science.sciencemag.org/content/early/2020/08/17/science.abd5223 References and Notes ↵, Molecular…

brucesterling:

*Covid-19.

https://science.sciencemag.org/content/early/2020/08/17/science.abd5223

References and Notes

  1. , Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–230 (2005). doi:10.1016/S0065-3527(05)64006-7pmid:16139595CrossRefPubMedWeb of ScienceGoogle Scholar
  2. , Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 181, 281–292.e6 (2020). doi:10.1016/j.cell.2020.02.058pmid:32155444CrossRefPubMedGoogle Scholar
  3. , Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020). doi:10.1126/science.abb2507pmid:32075877Abstract/FREE Full TextGoogle Scholar
  4. , Coronavirus Spike Protein and Tropism Changes. Adv. Virus Res. 96, 29–57 (2016). doi:10.1016/bs.aivir.2016.08.004pmid:27712627CrossRefPubMedGoogle Scholar
  5. , Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 3, 237–261 (2016). doi:10.1146/annurev-virology-110615-042301pmid:27578435CrossRefPubMedGoogle Scholar
  6. , Viral membrane fusion. Virology 479–480, 498–507 (2015). doi:10.1016/j.virol.2015.03.043pmid:25866377CrossRefPubMedGoogle Scholar
  7. , Distinct conformational states of SARS-CoV-2 spike protein. Science 10.1126/science.abd4251 (2020). doi:10.1126/science.abd4251pmid:32694201AbstractGoogle Scholar
  8. , Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein. Virology 335, 276–285 (2005). doi:10.1016/j.virol.2005.02.022pmid:15840526CrossRefPubMedGoogle Scholar
  9. ., www.biorxiv.org/content/10.1101/2020.06.23.167064v1 (2020).Google Scholar
  10. , Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4, 1011–1033 (2012). doi:10.3390/v4061011pmid:22816037CrossRefPubMedWeb of ScienceGoogle Scholar
  11. , Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 9, 837–842 (2020). doi:10.1080/22221751.2020.1756700pmid:32301390CrossRefPubMedGoogle Scholar
  12. , SARS-coronavirus-2 replication in Vero E6 cells: Replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. 10.1099/jgv.0.001453 (2020). doi:10.1099/jgv.0.001453pmid:32568027CrossRefPubMedGoogle Scholar
  13. , Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 382, 970–971 (2020). doi:10.1056/NEJMc2001468pmid:32003551CrossRefPubMedGoogle Scholar
  14. ., www.biorxiv.org/content/10.1101/2020.06.12.148726v1 (2020).Google Scholar
  15. NovaSTA. .doi:10.5281/zenodo.3973623Google Scholar
  16. STOPGAP. .doi:10.5281/zenodo.3973664Google Scholar
  17. , High-resolution protein design with backbone freedom. Science 282, 1462–1467 (1998). doi:10.1126/science.282.5393.1462pmid:9822371Abstract/FREE Full TextGoogle Scholar
  18. , Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. U.S.A. 114, 11157–11162 (2017). doi:10.1073/pnas.1708727114pmid:29073020Abstract/FREE Full TextGoogle Scholar
  19. , Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 23, 899–905 (2016). doi:10.1038/nsmb.3293pmid:27617430CrossRefPubMedGoogle Scholar
  20. , Deducing the N- and O- glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology 10.1093/glycob/cwaa042 (2020). doi:10.1093/glycob/cwaa042pmid:32363391CrossRefPubMedGoogle Scholar
  21. , Influenza hemagglutinin membrane anchor. Proc. Natl. Acad. Sci. U.S.A. 115, 10112–10117 (2018). doi:10.1073/pnas.1810927115pmid:30224494Abstract/FREE Full TextGoogle Scholar
  22. ., www.biorxiv.org/content/10.1101/2020.06.27.174979v1 (2020).Google Scholar
  23. ., www.biorxiv.org/content/10.1101/2020.07.08.192104v1 (2020).Google Scholar
  24. , Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol. 10.1038/s41594-020-0479-4 (2020). doi:10.1038/s41594-020-0479-4pmid:32699321CrossRefPubMedGoogle Scholar
  25. , A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 10.1038/s41594-020-0478-5 (2020). doi:10.1038/s41594-020-0478-5pmid:32737467CrossRefPubMedGoogle Scholar
  26. J. Hubert, Bioassay. 2nd edition. Dubuque (Iowa): Hunt Publishing pp. 65–66 (1984).
  27. ., www.biorxiv.org/content/10.1101/2020.03.22.002204v1 (2020).Google Scholar
  28. , Targeted cell entry of lentiviral vectors. Mol. Ther. 16, 1427–1436 (2008). doi:10.1038/mt.2008.128pmid:18578012CrossRefPubMedGoogle Scholar
  29. , VirAmp: A galaxy-based viral genome assembly pipeline. Gigascience 4, 19 (2015). doi:10.1186/s13742-015-0060-ypmid:25918639CrossRefPubMedGoogle Scholar
  30. , Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). doi:10.1016/j.jsb.2005.07.007pmid:16182563CrossRefPubMedWeb of ScienceGoogle Scholar
  31. , Benchmarking tomographic acquisition schemes for high-resolution structural biology. Nat. Commun. 11, 876 (2020). doi:10.1038/s41467-020-14535-2pmid:32054835CrossRefPubMedGoogle Scholar
  32. , CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). doi:10.1016/j.jsb.2015.08.008pmid:26278980CrossRefPubMedGoogle Scholar
  33. , Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015). doi:10.7554/eLife.06980pmid:26023829CrossRefPubMedGoogle Scholar
  34. , Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017). doi:10.1038/nature24490pmid:29144446CrossRefPubMedGoogle Scholar
  35. , Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). doi:10.1006/jsbi.1996.0013pmid:8742726CrossRefPubMedWeb of ScienceGoogle Scholar
  36. , Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J. Struct. Biol. 199, 187–195 (2017). doi:10.1016/j.jsb.2017.07.007pmid:28743638CrossRefPubMedGoogle Scholar
  37. Fourier3D. .doi:10.5281/zenodo.3973621Google Scholar
  38. , Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl. Acad. Sci. U.S.A. 102, 4729–4734 (2005). doi:10.1073/pnas.0409178102pmid:15774580Abstract/FREE Full TextGoogle Scholar
  39. , A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). doi:10.1109/TSMC.1979.4310076CrossRefWeb of ScienceGoogle Scholar
  40. , Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54, 5.6.1–5.6.37 (2016). doi:10.1002/cpbi.3pmid:27322406CrossRefPubMedGoogle Scholar
  41. , Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369, 330–333 (2020). pmid:32366695Abstract/FREE Full TextGoogle Scholar
  42. , LOGICOIL—Multi-state prediction of coiled-coil oligomeric state. Bioinformatics 29, 69–76 (2013). doi:10.1093/bioinformatics/bts648pmid:23129295CrossRefPubMedWeb of ScienceGoogle Scholar
  43. , CCBuilder 2.0: Powerful and accessible coiled-coil modeling. Protein Sci. 27, 103–111 (2018). doi:10.1002/pro.3279pmid:28836317CrossRefPubMedGoogle Scholar
  44. , The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep. 18, 1905–1921 (2017). doi:10.15252/embr.201643426pmid:29074503Abstract/FREE Full TextGoogle Scholar
  45. , CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 12, 405–413 (2016). doi:10.1021/acs.jctc.5b00935pmid:26631602CrossRefPubMedGoogle Scholar
  46. PyMOL, pymol.org.
  47. , CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 29, 320–331 (2019). doi:10.1093/glycob/cwz003pmid:30689864CrossRefPubMedGoogle Scholar
  48. , Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983). doi:10.1063/1.445869CrossRefPubMedWeb of ScienceGoogle Scholar
  49. , Simulation of Osmotic Pressure in Concentrated Aqueous Salt Solutions. J. Phys. Chem. Lett. 1, 183–189 (2010). doi:10.1021/jz900079wCrossRefWeb of ScienceGoogle Scholar
  50. , GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015). doi:10.1016/j.softx.2015.06.001CrossRefPubMedGoogle Scholar
  51. , Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). doi:10.1063/1.448118CrossRefPubMedWeb of ScienceGoogle Scholar
  52. , LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-HCrossRefWeb of ScienceGoogle Scholar
  53. , Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981). doi:10.1063/1.328693CrossRefPubMedWeb of ScienceGoogle Scholar
  54. , Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). doi:10.1063/1.2408420pmid:17212484CrossRefPubMedGoogle Scholar
  55. , GROmaρs: A GROMACS-Based Toolset to Analyze Density Maps Derived from Molecular Dynamics Simulations. Biophys. J. 116, 4–11 (2019). doi:10.1016/j.bpj.2018.11.3126pmid:30558883CrossRefPubMedGoogle Scholar
  56. , UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018). doi:10.1002/pro.3235pmid:28710774CrossRefPubMedGoogle Scholar
  57. , Automated cryo-EM structure refinement using correlation-driven molecular dynamics. eLife 8, e43542 (2019). doi:10.7554/eLife.43542pmid:30829573CrossRefPubMedGoogle Scholar
  58. , Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). doi:10.1038/nmeth.2019pmid:22743772CrossRefPubMedWeb of ScienceGoogle Scholar
  59. , New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). doi:10.7554/eLife.42166pmid:30412051CrossRefPubMedGoogle Scholar